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1. INRODUCTION

Recent advances in semiconductor device fabrication technology have made possible the realiza-

tion of increasingly complex digital integrated circuits. VLSI computation theory addree the prob-

lem of efficiently using this chip complexity (as measured by area) in order to decrease computation

time. The search for efficient use of area and time resources has borne certain dlas of architectures

that are repeatedly utilized.

One such clam is that of systolic arrays Systolic arrays have been described by H. T. Kung and C

E. Leiserson [91

*A systolic system i a network of procemors which rhythmically compute and pan data through the
system. Every procbor regularly pumps data in and out, each time performing some short computa-
tion, so that a regular flow of data is maintained in the network.:

Systolic networks exhibit regular and modular layouts. In addition, interprocemor connections are

bounded in number and localized in space. These features make systolic architectures particularly well

suited to the planar format imposed by VLSI technology. Systolic architectures also interface with con-

ventional computer memories in a natural and efficient way. A number of systolic arrays have been

proposed by a number of authors [1,2,3A,67,,1O,11] These arrays seem most promising in certain

numerical computations; proposed applications include discrete convolution, matrix multiplication, LU

and other matrix decompositions, triangular system solution, and other related computations.

The systolic arrays that have been proposed thus far share many common features. However,

there has been little theory unifying these designs, and most have been presented ad hoc, without

detailed analysis. Here, we take the fiA steps toward the development of a theoretical framework to

unify the analysis and synthesis of systolic networks. We describe a clam of transformations on sys-

tolic networks that alter the topology of a network while preserving the timing of its computations.

Them transformations may be used to demonstrate the equivalence of two existing systolic designs or to

obtain a new design from an existing one.

This thesis is organized as follows. In the second chapter, we discum our model of a systolic net-

work and identify the parameters that we will use to characterize one. In the third chapter, we present

.. h
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the main result of the theuis, two theorems that allow us to transform the parameters of a systolic net-

work while preserving the nature of the computation that it performs. We demonstrate these transf or-

mations and characteriz those that yield *croesngfree' systolic networks. Finally, in the fourth

chapter. we present our conclusions and suggestions for further research.

*. . . . . . . .. . . . . . . .~.% N~NN.
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2. MODEL OF A SYSTOLIC NETWORK

2.1. MODEL OF PROCESSING ELEMENTS

A systolic network can be viewed as a collection of processing elements (PEs) located at vertices of

a multidimensional uniform grid. Each of the PEs can be partitioned (Figure 1) into a control machine,

M, and a computation machine, N. Both of these can be considered finite state machines: however, .*._

references to the state of a PE will actually apply only to the state of the control machine. The state of

the computation machine is the contents of its data regsters and will be considered later. .

control control signals control signals
machine from neighbors transition to neighbors "-

7_functions ) '''

data from to
neighbors computation neighbors. functions -

computation
machine

V..

Figure 1. General model of a symlic PE

The control machine effects the correct state transitions for the PF, transmits the appropriate control

signals to neighboring P~s, and controls the functions computed by the computation machine. In short,

the control machine performs the synchronization and sequencing activities necessry to coordinate the

operation of the systolic network. The computation machine, on the other hand, operates on the data

* flowing through the network. It performs the arithmetic involved in computing the actual output of

the network. Using the formalism of finite state machines, we have

= 8 .I(5p~), C0  XM(sC), R' =8(P.DAs) Do WRs=

where Q, R, C, and D are the PE state, the PE register contents, the control signals, and the data,

J ..- .- ° - -.
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respectively. Alao, the subscripts I and 0 denote input and output, respectively, and 8 and X are respec-

tively the state transition and output functions.

The PEs in a systolic network are selected from a set of possible module types. Some systolic net-

works utilize only one type of module, while others utilize as many as four types. In afl cases, how-

ever, the number of module types is independent of the network size and is, instead, determined by the

type of computation performed by the network. Each module type is characterized by a module

descriptom The module description specifies the states in which a PE of this module type can be. Each

of these states, in turn, is characterized by a state description. A state description consists of a colec-

tion of asignment statements and control statements to be executed by a PE in this state at the end of

every clock cycle. The assignment statements are written in a register transfer language and dictate the

operation of the computation machine; they indicate which input ports or registers serve a sources of

operands, which operations are performed on the operands, and which output ports or registers serve as

destinations for the results. The control statements dictate the operation of the control machine; they

indicate state transitions to be executed by the PE or its neighbors. A state transition to be executed by

a neighbor must be initiated by the PE via control signals.

2.2. MODEL OF DATA FLOWS

The locations of the PEs in the uniform grid are constrained in two ways. First, consider the sub-

set of PEs belonging to a particular module type. We will require that the set of positions occupied by

these PEs forms a lattice. A set, P, of points on a uniform grid is a lattice if

P p I p Lg + d, g E G), where G is the set of unit-grid points contained in a closed convex

domain (G is referred to briefly as a convex grid sed L (the distortion matrix) is a matrix of rational

numbers mapping each unit-grid point to a uniform-grid point, and d is a fixed grid point (the origin,

Le., P must be the result of an afne transformation on a convex grid set, G, (Figure 2). The notation p

is used heret o represent a d-component vector [p p2 ... pr, where d is the dimension of the uni-

form grid in which the PEs are located.

,.....,-.........,....... ..... *..... . . . . .. .--....-... ". ........ ...... ....
.

.- ... ,
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Figure 2. Example of a lattice in two dimensions, -

and the distortion matrix WL

Secondly, consider a PE at position p. If this PE receives input data directly (in unit time) from :.

another PE at position p-v (v*O), then, in order to maintain a regular flow of data. we will require..-.

that it be able to trnmt output data directly (in unit time) to a PE at position p+v (except. possibly,

for boundary PES). Thus, there must exist a PE at p+v, a directed edge for data communication with :.i

terminals (P --YpA and one with terminals (p~p+v).

If we associate all the data that either flow along communication edges with a particular length

and orientation or reside in a particular set of computation machine regisers, this will define a daa::.

flow. Formally. a data flow is a pair C < <A.0> de~fined as followr i

1. A is a set of data (inputs, outputs, or intermediate results of a systolic computation), -

2. VN, the set of natural integers, corresponds to the set of instants of discrete time (t E IN i the index " ...

of the time unit, -

0.$: A X IN- U is an inJeCtive function Of the data set and discrete time that maps, at any given t, ..

each of the elements of A to a position on the uniform grid U. Denote t) the range

Secondly,-- " -- .t ! =. c a .a p p f t P r



6

of at time L Function is further constrained as follows:

a. ,(at+k) - (at) v for all a E A and all k,t E N
k

(i.e., all elements of A move with the same constant velocity, v-

b. (A.t) must be a lattice for any integer t.

Combining (3a) and (3b), we obtain O(At) - {p I p =Lg+ d +tv, g E G. Thus, we can define

an injective, time independent function, y. which maps elements of A to a position in G, a given convex

grid sec

S:A-G.

Therefore, O(a.t) = L-(a) + d + tv.

,- o

.,o- .
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3. TRANSFORMATION OF DATA FLOWS

3.1. MATEMATICAL DEFITON

In this section, we define a clas of transformations on data flows that alter the topology of a sys-

tolic network without changing the timing of its data interaction. Other authors have suggested simi-

lar, but somewhat different transformations. In particular, Leiserson and Saxe have proven a "Systolic

Conversion Theorem* that converts nonsystolic networks to systolic networks [91 However, their

conversion is effected by retiming the computations of a network without changing the topology of the

underlying communication graph. Cappello and Steiglitz have also suggested transformations to unify

the design of systolic networks [5]. They have described linear transformations of space-time that are

capable of altering both network topology and computation timing. As we shall explain later, the

transformations described by Cappello and Steiglitz are especially similar to ours, which are character-

ized by the two following theorems.

Theorem 1:

A constant vector, u, may be added to all data flow velocities without altering the data flow

origins, the distortion matrices, -, or the timing of the computations.

Proof: Consider two arbitrary elements of two different data flows, x E X and y E Y, that

must interact at some time t. This constrains X and Y to satisfy O(,t) - 0(y,t). If L, d.,

and v, denote the distortion matrix, the origin, and the velocity of data flow X., respectively,

and I., di, and v. denote the corresponding entities of data flow Y, we can write this con-

straint as

L,Cx) + d.,, + tv, - L7yy(y) + dy + try

We now show that if v, and vy are the transformed velocities of the X and Y data flows,

respectively, the above constraint is still satisfied.

Let v -= + , Vy  Ty + M

. .. . .



z,.X) +X +tv Ly) + + tV 7

LxC) + d + tv + tu = L-y$y) + d + tvy + t-

L-y,,(x) + d + t(v. + u) = Lyyy(y) + 4 + t(vy + u)

L1 yx(x) + d, + tv' = Ly-y(y) + dy+tvy'

Furthermore, since this transformation is invertible, no additional interactions ar intro-

duced by it, Le, there is a one-to-one correspondence between the data interactions in the ori-

ginal network and the data interactions in the resultant network. 03

Theorem 2:

All of the data flow velocities, origins, and distortion matrices may be multiplied by a non-

singular matrix, M, without altering y or the timing of the computations.

Proof: Again, we consider two arbitrary interacting elements and show that if vx' and vy-

are the transformed velocities, d,' and 4' are the transformed origins, and L.' and L' are

the transformed distortion matrices of the X and Y data flows, respectively, the positional

constraint is still satisfied.

Let vx = Mv, vy = Mvy, dx' = Md dy -Md, Ix' = ML1.,y' = NLy:,,

J,yx(x) + d, + tv, = Lyyy) + dy + tvy.

MCL,,v/ix) + d. + tv.) = M(Ly-,(y) + dy + tvy)

MLxf,,(x) + Md, + tMv= ML-yly(y) + Mdy + tMvy

L ,',(x) + d.' " tv '  Ly',yy(y) 4dy' +" y

Since M is nonsingular, this transformation is also invertible, and, again, there is a one-to-

one correspondence between the data interactions in the original network and the data

interactions in the resultant network. C-

Them two theorems provide a simple, yet powerful set of rules for transforming systolic net-

works. Networks that are equivalent under these transformations are sid to be aumiely ,qtvalent or

simply eqzdvatent. Networks that are equivalent under transformations of the second type alone (those

. . .'
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described by Theorem 2) are said to be lnearly eqtivalent. In general. these afte transformations

result in topological changes in the network, but, if we restrict them to be linear, they result only in

"conformal" changes in the network, i.e., dilation, contraction, rotation, or reflection. The intermediate - "

results of such transformations are arbitrary, but the final re-a.t must represent a valid set of data

flows: in particular, each of the velocities and distortion matrices must consist of rational elements In

subsequent portions of this thesis, we will tacitly ignore the data flow origins since these parameters can

easily be obtained after transformation through initial condition considerations.

As was noted previously, the affne transformation of data flow parameters is very similar to the

linear transformation of space-time as described by Cappello and Steiglitz. In fact, in cases where both

can be applied, our affine transformations are a special case of the Cappello-Steiglitz transformations.

Specifically, Theorem I describes transformations that Cappello and Steiglitz would represent by the

matrix

while Theorem 2 describes transformations that they would represent by the matrix

OT I
(The last coordinate is taken to be time.) We feel, however, that this low of generality is compensated

by the following considerations. First, the affne transformations give the designer more of a

"kinematic" intuition of the design process and are simpler to use if one is given a systolic network a

priori. The Cappello-Steiglitz transformations, on the other hand, require the geometric description of

an algorithm. Second, the set of systolic networks is closed under affne transformation. However,
Cappello-Steiglitz transformations may yield designs that are unrealist in the VLSI model of compu-

tation, e.g, designs with unbounded fan-in or fan-out. (This is necessary, of course, in contexts where

such designs are to be studied.) Finally, as we shall see, affine transformations may also be used to

derive the module descriptions of a transformed network. This task becomes nontrivial when dealing



with systolic networks having multiple module types or a module type with multiple states.

3.2. CANONICAL REPRESENTATION
a..

Since affne transformations can yield a number of equivalent systolic networks, it will be useful

to distinguish a canonical net ork. The typical systolic computation is defined in terms of an opera-

tion, a set of one or more operands, a result, and, possibly, a set of side conditions. For a particular com-

putation, a systolic network has inputs and outputs corresponding in some way to the operands and the

result. This correspondence is unrestricted, ie., inputs need not correspond to operands, and outputs

need not correspond to the result. The systolic network computes the outputs (whether they are results

or operands) so that the result is consistent with the operation on the operands, subject to any existing

side conditions.

With this in mind, we define the canonical network as one in which the result data flow has zero

* velocity and an identity distortion matrix. All systolic neiworks can then be represented as a two step

transformation of a canonical design: first, we add a vector to all data flow velocities of the canonical

design (according to Theorem 1, second, we multiply all data flow velocities and distortion matrices by

a nonsingular matrix (according to Theorem 2). This representation will be called the canonical

representation of the network. Thus, a set of networks that share the same canonical network is an

affe equivalence class, and a set of networks that share the same canonical network and the same first

' step of their canonical representations is a linear equivalence class.

33. TR.ANSFORMATION OF STATE FLOWS

At first, one might suspect that the module descriptions of a systolic network resulting from an

afne transformation cannot be recovered easily from the module descriptions of the original network.

- Conceptually, though, it is quite simple. Let us replace each of the PEs of the original array with an

emulator, E, that, when given an input and a state chosen from the union of all possible states of all

module types, computes the output generated by a PE in the given state upon receipt of that input. The

emulator is esentally a computation machine general enough to compute any function of any module

V...

.. . . . . . . ... .-. . .. . ... . . . .... . . ..- - ... .- ;... . -. 4 . . . .- -.-.-.....
• . . . .. -...... . : .- ...... ~~~~~...-...... ............. -........ .. ., . _.- ..-... ,,.,.,. .,. - :



* type, and the current state is simply one of the inputs to the emulator (Figure 3).

state from saet

Feigurh3bGo ras moenfaytceilators

an h iptouptdaaC 1 n 0)aedata f lolmns.(eitrcoonsaemlmnso data 

flos it roveocty) oeivelys themsttestcan beethughtosntedtafowche

After~~igr th trnfomtinntepeuiritie oel new astolow emuatugor nwmdltpsta

may eutse torplc the emulators with hard-wired ate toransition conro magie otntR

and rder ptoucanuvota transfO)rm atioantht flow t (eistr ncenrt ave mte odule

desrips in anpropoiate formact.ly Firstatwes agn ae ditincgtlaetoahsae of ever typerdt fowhce 

modlreer this colecstino labele state fom thne tasalphae fromg wich tee ofthe datatews

fow are tselctd.aSeond, whe moduifyitheothne state ecrptons byy remviges all contrle ttens tad

ma eeoreplace uo th eortar reit adnainsnthte taniinontro ttmntswt hprpit

dat forlaels onrolt stamentstcan eelmnaenc the state flowis nowssr proie sae transionl

informtioni to mpoduermuat ort whiprtw andsrgse eabeising labe tech since daflo vr yeoi

ties are not preserved under affne transformation. For instance, data flowing from west to east in the

original network may, after a suitable affine transformation, flow from South to north in the resulting

network. Similarly, a data flow that is stationary, ixe, contained in module registers, may move from7

* South to north after transformation. Thus, references to register names. east and west ports, or north

.................. ..................... . . . -
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and south ports become meaningless after transformation. Any ambiguity in reference to input/output

ports or registers by data flow label will be resolved in the following manner. a data flow label on the

right-hand side of an assignment arrow will refer to the port through which elements of this data flow

enter the module or, if the data flow is stationary, the register in which elements of it are contained; a %

data flow label on the left-hand side of an assignment arrow will refer to the port through which ele-

ments of this data flow exit the module or, if the data flow is stationary, the register in which elements

of it are contained.

Abstracting the state flow from the control statements executed by the PEs is basically a problem

in the theory of cellular automata. We know of no formalized or algorithmic approach to this prob-

lem; however, most of the instances encountered with systolic processing require only a limited effort

and can be determined by inspection. The parameters to be determined are the velocity, a suitable con-

vex grid set, and a distortion matrix. Once these are determined, they can be transformed along with

the parameters of the data flows according to rules of Theorems 1 and 2.

3.4. EXAMPLES OF TRANSFORMATIONS

3.4.1. DISCRETE OPEN CONVOLUTION

Let us consider the problem of discrete open convolution, which is stated simply as follow: given

a sequence of weights, W, and a sequence of inputs, X, compute the result sequence, Y W X. where

the operation is defined as Y[i = h W X X[i-jI Usually, W, X, or both have finite length. so the

summation has finite bounds.

Kung has catalogued a family of linear systolic networks for discrete convolution in [71 He

refers to these as *(pure-) systolic* convolution arrays to distinguish them from "(semi-) systolic arrays

" in which global fan-in or fan-out is necesmry. Kung, however, has used a nonstandard definition of

convolution where Y[i] = Wtj] x X i+j-l] We prefer to adhere to the conventional definition of

convolution since it preserves the symmetry (commutativity) of the operation, ie, W, X = X W.

"*" Clearly, convolution in the sense of Kung which is conventionally referred to as "correlation is

. .. -*..
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equivalent to convolving X delayed one time unit and W reversed in time. In other words, if Y is the

convolution of X and W in the sense of Kung, then Y = U * V, where Uk] - W[-k] and V[k] . X[k-11

in this thesis, future references to the designs of Kung will incorporate the modifications necessary to

compute the conventional convolution.

One possible canonical convolution network is that labeled RI (results stay, inputs and weights

move in opposite directions) by Kung (Figure 4). This network is essentially a pipelined implementa-

tion of the defining equation of convolution. Since the network is a linear array, the unit grid men-

tioned above reduces to the integer line. Similarly, the velocities and distortion matrices of the data

flows reduce to rational scalars.

w wo =-Wo.-W 1  -

F ~Y ' + WiXi 2-

Figre 4. Generl stutr of the caonical convolver (Ri) !
and functional description of modules

-There are three data flows in this networL. The elements of W comprise an eastward data flow,

the parameters of which will be subscripted with w. The elements of X compris a westward data i''

*flow; parameters amociated with it wifl be subscripted with z. The third data fdow is stationary and..-
W W,

consists of the elements of Y, which are contained in the registers of the PEt parameters associated with F

* this data flow will be subcripted with y. As a convention, we will define v for all sequences (and vec- .i

*tors) such thataiD -i. We then obtain these values for the data ftow prameters:'~

0 n2, 2.

• .-. -- --- -.- ,........".....'.'-.-...'..-..-...-,..'-.,",-...-.."..--."-'-'-..-'.-,..-'-..'"."

.-'.~A l -' . .O- W O'- W'-. .' . •" ' - -" . -"." . . .' ' '""' . '' . ',''" ', '' -_ ""''' -_.'" ' . - .' . - " . " ' '

' ~ ~ ~ ~ 1 " X .,- ~ '" -m
"

i]In,'id dld m lk nnuln d' II
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If a network in which the weights are stationary is desired, we could simply subtract v, from all

the velocities of the data flows in the canonical design. The resulting data flow velocities are (distortion

matrices remain unchanged)

-1 v=0, vx - 2, v =-.

In this network (Figure 5), the weights are indeed stationary and inputs move in the same direction as

the results. but at twice the speed. Kung mentions this network as a "dual" of design W2, although it

now seems more closely related to RI. Transformation of the module descriptions is trivial since the.

only PEs in which computation occurs are inner product step processor

X0X , XX2
%0 Yo YY 3

Yo - Y + WX1  Yo - Y

Figure 5. General structure of the -1 convolver and
functional description of modules

A network with stationary inputs can be obtained by subtracting v, from the data flow velocities

* of the canonical network. The data flow velocities are then

+1 v, 2, v= O, v= .

In this network (Figure 6), which is not catalogued by Kung, the weights move in the same direction as

the results, but at twice the speed.

................................
..........-... o"

A . . . . . . . . . .-- 2,.... . . . . .
. . . . . . . . . . . . . . . .
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%*1

W o W21

.0 Ys f I f Y,,'13 
'

Y - " W1X - I

Figure 6. General structure of the +1 convolver and
functional description of modules

Another canonical convolution network catalogued by Kung is R2 (results stay, inputs and

weights move in same direction, but at different speeds). This design (Figure 7) has the following data

flow parameters:

canoaical( vw = 1/2, vx = 1, Vy =0.

2E:0 ,'X, X0 W O - W,
--3 ---- )0 + WIX, -

Figure 7. General structure of the canonical convolver (R2)
and functional description of modules

Kurg mentions that this design has a "dual* in which the weights move twice as fast as the inputs.

This is clearly a result of the symmetry of convolution, which allows us to interchange the W and X

data flow parameterm in fact, the W and X data flow parameters of any systolic convolution network

~. .. . . .. . . . . .. . . . ." ......~. . . . . '. :"'.. ,,: '" '.-".-',-.'".- ' '' '' : ''" "



16

can be interchanged to yield another valid convolution network.

Now, simply subtracting v. from all data flow velocities in the canonical network yields a new

convolution network in which the weights are stationary. The resulting data flow velocities are

-1/2 ( v,, 0,vx = 1/2, vy =-1/2.

This design is labeled W1 (weights stay, inputs and results move in opposite directions) by Kung (Fig-

ure 8).

X2e

Y(, Y, _

,1 X0: ry ..

~~Xo -xI"

Yo - Yi + WX

Figure 8. General structure of the -1/2 convolver and
functional description of modules

Suppose that we subtract instead v, from the velocities of the canonical data flows. The resulting -"

data flow velocities are

-1 { v= -1/2,v =O, Vy=-.

In this network (Figure 9), the inputs are stationary, and the weights and results move in the same

direction but at different speeds. If we interchange the data flow parameters of W and X, we obtain the

design labeled W2 (weights stay, inputs and results move in the same direction but at different speeds)

by Kung.
,...

, We might also seek a transformation to demonstrate the equivalence of RI and R2. However, the
equivalence of RI and R2 is not an immediate consequence of affine transformations or the symmetry -21

of convolution. One can observe that the signs of L, and L, are the same for RI; for this reason, we
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Lo - Y1

YoO Wo

YO Y", +, WI- WC, W ,

Figure 9. General struture of the -1 convolver and
functional description of modules

say that Ri is a cogradient convolution network- For R2. though. the signs of Lw and L, are opposite;

for this reason. we say that R2 is a contragradient convolution network. Clearly. no affine transforma-

tion or simple interchange of data flow parameters will map R1 to R2. Thus. it seems that all of the

i known systolic convolution designs lie in two affine equivalence cla e the class of cogradient designs

and the class of contragradient designs. These designs are summarized in the table below (Figure 10).

affne -inerKung's label

class class __ _ X  v unchanged __ ---__"_

cogradient 0 1 -1 0 RI
(Lw=2. Iz=2. L7=1) -1 0 -2 -1 "dua" of W2 -

+1 2 0 1 -

contragradient 0 1/2 1 0 R2 "dual" of R2
(L,= 1/2, L=-- 1.-i) -1/2 0 1/2 -1/2 W1

-1 -1/2 0 -1 - W2

Figure 10. Summary of the systolic convolution networks

3.4.2. MATRIX MLTIPLICATION

Another problem for which systolic solutions have been proposed is that of matrix multiplication.

i.e.. given two matrices A and B. find the product matrix C - AB. The canonical systolic network for

.........................................................
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matrix multiplication is the planar array of "orthogonally-connected' PEs (Figure 11). In '111

Preparata and Vuillemin describe this network (rotated -90) and show that its operauon may be

viewed as a pipelined interaction of columns of A with rows of B. This pipelined interaction of

columns with rows is a central feature of many systolic computations and will be further explored

later. Since this network is a planar array, the unit grid becomes planar, the velocities of the data flows

* are two-component vectors, and the distortion matrices are 2x2 matrices.

A0

Ac, - A,

B, E B0  Bo-B

C - C + AIBI

A,

i A

Figure 11. General structure of the canonical ([0 OF) matrix multiplier
and functional description of modules

p

K There are three data flows in this network. The northward data flow consists of the elements of

A. The eastward data flow consists of the elements of B. The third data flow is stationary and consists

of the elements of the product matrix, C, which are accumulated in the module registers. The parame-

ters of these data flows will be subscripted with a, b, and c, respectively. In this thesis, we will assume

that -y is defined for all matrices such that y(a[LjD = [i iTr.The data flow parameters are

V. = 1 , Vb =1 OF, v,= o OF,Lb IoL =I'0
L,= 1-L= 0 •1.

A number of potentially useful linear equivalence classes of networks for matrix multiplication

may be derived by applying transformations to this network, as specified in Theorem 1. First, let us

--~~~~~~.. . . .. . . . . . . ........ . ... ,...,.... . *oo*-,,..r,¢" '
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consider the network obtained by adding the vector [-I -Ij to all velocities. The new velocities are

(again, distortion matrices remain unchanged)

= 1-I oF, b= 10 -1 r, v = (-1 -I..

As in the case of convolution, all the active PEs in the original network are inner product step proces- -

sors. Therefore, all the PEs in this network are also inner product step processors. Because each PE has

six neighbors, the network (Figure 12) is said to be "hexagonally-connected.."

B,
C,

A- A, Bo - B, "

SCo- C, + AIB"

C0  B0

Figure 12. General structure of the [-1 -I r matrix multiplier

Now, if we add the vector [-1/2 - 1/21r to all velocities in the canonical network, we obtain a net-

work (Figure 13) that is again "orthogonally-connected," but communication along one of the axes is

bidirectional now. The network has these data flow velocities

V, - [-1/2 112], T b = (1/2 -I1/2 T, v = [-1/2 -1/2] T.
-1/2 11/

Yet another network can be obtained by adding the vector [-1/3 -1/31 r to all velocities in the canoni-

cal network. The resulting network (Figure 14) is *hexagonally-connected" with the following data

flow velocities:

V= [-1/3 2/3]r , Vb = [2/3 -1/31, v, = [-1/3 -1/3FI.
1,. .

b?

"_.''.''. .. L-L: ':,,:... ". .... . . . . . . . . . . . . ...- " " """ " " " " " " "" " "'" " 
"

'. " .. ". . . . . . . . ..- "
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A0  

*4,

A, CO~B - +B,

CO BO

Figure 13. General structure of the [-1/2 -1/2Fr matrix multiplier

AO

E B O - B ,

CO
A,

Figure 14. General structure of the (-1/3 -1/3Fr matrix multiplier

It is important to note that each of the three matrix multiplication networks derived above Ls

rpntative of a linear equivalence class of systolic networks: each can be "redrawn* in a more con-

ventional or pleasing manner simply by multiplying the data flow parameters by the appropriate

matrix. For instance. suppose we let
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-3/2 3/21
-3 -3" .

If we multiply the data flow parameters of the [-1/3 -1/3] T network by M, we obtain the data flow

parameters of the Kung-Leiserson systolic matrix multiplier [81:

,a ; [3/2 - Vl = [-3/2 -lJT, v - [0 2Ir,

-3 -3/2 3/2 3 -3/2 3/2
La= 0 3 3 0' I = -3 --

Note that this network (Figure 15), when specialized to the case of banded matrices considered by Kung

and Leiserson, has a parallelogram shape, as did their network.

Figure 15. General structure of the Kung-Leiserson matrix multiplier
(generalized to dense matrices)

3.4.3. LU DECONMSITON

The solution of systems of linear equations is another problem that has been approached with sys-

tolic techniques. This problem is usually posed in matrix form as followr. given a nonsingular nXn

V matrix A and an nXm matrix C, find the nxm matrix B such that C - AB. The solution of this prob-

I,

lem. for general matrices, usually involves decomposing A into triangular factors and then solving tri-

angular linear systems, both of which can Le done directly with systolic designs. Kung and Leiserson

have presented a systolic network for LU decomposition in [81 This network (Figure 16) computes two

- oi ehius I rbe suulypsd nwt fr sflo gvnan ~ua x
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* matrices, L and U, such that the input matrix, A, can be expressed as A - LU, where L is unit lower tri-

angular and U is upper triangular.

In the Kung-Leiserson design, the matrix A flows northward into a network of "hexagonally-

connected" processors. The L and U matrices may be retrieved from the network in a variety of ways;

we will choose an implementation of the Kung-Leiserson design that more clearly exhibits network

symmetry, L flows southeast from the lower-right margin of the network, and U flows southwest

from the lower-left margin of the network. These three matrices comprise the data flows in the net-

work. The corresponding data flow parameters will be subscripted with a, , and u, respectively.

Analysis of the network yields the following values for the data flow velocities and distortion

matrices

v,= [3/2 -J , vu = [-3/2 -1J, v . [0 2] T,

-.= 3  -3/2j 19 13/2 3] It K~ 132 3/2j10 3 3 L 0' -3 -3•:-:

L.: L

"-A2

Figure 16. The Kung-Leiserson network for LU decomposition

There are four module types in this network; the PE at the top of the network is a T-module;

the PEs at the upper-left margin (except the top) are S-modules; the PEs at the upper-right margin

. (except the top) are R-modules; all of the other PEs are G-modules. The module descriptions are given

~......
- - 4 ...
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-" below (Figure 17) The assignment statements are written in a concurrent form, as indicated by the use

i of commas to separate them.

module state asignment statements control statements
type label ____

T (top) TI: L - 1,U'-A -..
S (u.-1.) Si: L - A/U, U -U U_ _..

R (u.-r.) RI: L - L, U - A
G (others) GI: L-L,U-UA-A-LU U,_A_*-_A_-

Figure 17. Module descriptions for the Kung-Leiserson LU decomposer

Now, we will derive a canonical network for LU decomposition. In this computation, the opera-

tion is matrix multiplication. the operands are the L and U matrices, and the result is the matrix A.

The side conditions are that L is unit lower triangular and U is upper triangular. Therefore, the canon-

ical design is the one in which the A data flow is stationary and has an identity distortion matrix. It is

obtained, first, by adding -v = [0 -2 r to 11 data flow velocities and, second, by multiplying all data

flow velocities and distortion matrices by L - '. (Note that the Kung-Leiserson network is a member of

the jl v , = [-1/3 -1/3FT linear equivalence class.) The results of the transformation are as follows:

V,= [o 1F, [ 0 r. = [o 01r,

j-X 24 L3" = 1 ; L, = 4:'

This canonical network is shown below (Figure 18).

We now must describe the functions of the PEs in the canonical network. In all of the previously

discussed transformations, obtaining the module descriptions was trivial since the networks had only

one module type and that module had a single state. In this case, however, the state flow technique

must be employed. In the Kung-Leiserson network, the PEs do not change state, so the state flow has

zero velocity (v, -[0 0Jr). If we take G, to be the convex grid set below (Figure 19), then

. . .. . . . . .. .. •
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Figure 18. The canonical network for LU decomposition

-32 
32

R l G I G I G

Figure 19. The convex grid set underlying the state flow

Transforming the state flow parameters as we did the data flow parameters, we obtain:

* Io j f
" , -1/3 -1/16 0 0 113

V. L; 1/3 -i/6 = 1/3

1-1/3 -1/61 X1-3/2 3/21 2/3 -1/31.
L= - =1 1/3 -1/6 ×  -1 -1 = -1/3 2/3 I"

We will derive the module descriptions for the canonical network from this transformed state flow

(Figure 20).

I_

• ~ ~ ~ ~ ~ ~.. ..- ' - .- ..-:- - -- - - ".-.. . .".'-.:- . .-.".-. ."-..'-. ." ..-....: : - ..... -- q .-::"-" "" ".",:': * *:" ;- ::::' " ::
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1RI -

1 G

/ I GSI G

Si'

%. --.

Figure 20. The state flow of the canonical LU decomposer
(at first clock cycle)

* We can observe that the PEs on the diagonal of the network (those of the form Ai iD can only

enter states 01 and TI. The P~s below the diagonal (those of the form MNi~jL i>9) can enter only 01

g.-.

and Si, and the P~s above the diagonal (those of the form MfijL i < P can enter only 01 and R1. This

suggests three new module types: D-modules (Mti i] with states DI =01I and D2 = Ti, L-modules t

(MbLjl i>j) with states LI =0G1 and L2 = Si, and U-modules (MAijj i<j) with states UI =01I and

U2 =Ri. (Here, equality of states indicates computational equivalence, iLe., the asignment statements

of the states are the same.)

mo.%

We will now determine a bard-wired state transition scheme that realizes this state flow. Since

the only part of the state flow that is crucial to the operation of the network is that which coincides

with the data flows, we will find it convenient to assume that all PEs are initially in the state

' | .

corresponding to 01, iLe., D-modules are in state DI, L-modules are in Li, and U-modules are in Cl.
Ti s-

! Thssaeat saqus-uecn tt , intes 'eta h eitrcnet faP nti tt r

................................... -.. . .. . . .. .. .. . . .. . . .. . .
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not altered unless both the L and U data flows are flowing through the PE. The first PE to be excited

from this state is M[1,1] which enters state D2. This must be accomplished via an external signal

After each M[i i] enters this state, the processor immediately to the right of it enters 12, and the proces-

sor immediately above it enters U2. Therefore, we must include in the control statements of state D2 a

device to indicate that these state transitions occur. We do this with "goto" control statements: a goto

preceded by a PE reference denotes a state transition control signal to be sent to a neighboring PE; one

without a PE reference denotes a state transition to be executed by the PE itself. So, for state D2, we

include 'Mji+1,i] goto 12" and "M[ii+l] goto U2." The state 12 propagates to the east, so its control

statements include *Ai+l,j] goto L2.' Similarly, the state U2 propagates to the north, so its control

statements include 'M[i,j+1] goto U2." Immediately following these second states, the PEs may return

to the quasi-quiescent state, so we include in the control statements of D2, L2, and U2 "goto D1,7 "goto

L1, and "goto UI," respectively. The only remaining issue, then, is to determine a mechanism for D2 to

propagate along the network diagonal There are several possible solutions, however, the most straight-

forward of these is to include in the control statements of state D2 M[i+l+1] goto D2 in 3, By this,

we mean that Mti+li+1] is to transition to state D2 in three clock cycles. This can be achieved by

buffering the control signal with a two-stage shift register. The module descriptions that finally

emerge are shown below (Figure 21).

module state mgment statements control statements
type label

D(M[ iiD D1: L -. , U -U, A - A -LU
D2 L -, U -A M[i+1,i] goto L2,

MAi.i+1] goto U2,
M[i+1,i+1] goto D2 in 3,

_____ ____goto D1
L (Mi t, i> ) Li: L -L, U -U, A A -LU

L2-A/,U-U M~i+l,j goto L2,
goto Li

U (Mfiji<j) Ul: L -L, U - U, A - A -LU
U2: L - L, U - A M[ij+1] goto U2,

goto U1

Figure 21. Module descriptions for the canonical LU decomposer

.4.2
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3.4.4. TRIANGULAR SYSTEM SOLUTION

As was mentioned previously, the solution of triangular systems of linear equations is an impor-

tant component in the problem of solving more general systems of linear equations. The lower-

triangular variant of this problem is the following: given a nonsingular, lower-triangular matrix L

and a matrix Y, find the matrix X such that Y - LX. In [81 Kung and Leiserson propose a systolic net-

work for solving this problem in the special case where Y and X are column vectors. Here, we make

minor modifications to their network and generalize it (the details are omitted for brevity) to obtain

the network below (Figure 22), which solves lower-triangular linear systems in full generality (Y and

X are matrices).

L
x -..

B 4-.

Figure 22. A systolic network for triangular system solution

- The matrix L flows southward into the "orthogonally-connected" network of processors, Y flows

westward into the network, and X flows eastward from the network. These, in fact, are the three data

flows in the network; their parameters will be subscripted with , y, and x, respectively. The values are

v1  o - 1jr, v= [I OF, Vy =[-I o r,

1 = - f, - 2 -1 = [ 1 4

There are two module types in this network. the PEs at the left margin are D-modules; the

remining ones are M-modules. The module descriptions are given below (Figure 23). Initially, all PEs

are in a quiescent state, state 0. To initiate the computation, state DI is externally excited in the

. . . .. -, .- , . .- •.-. -. • . . -. -. '. . --- --. -... -. . . .'-.,'. -'- . .I" o
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uppermost D-module (M[1,pD.

module state assignment statements control statements
type label

D (M[1,j]) DI: L -. , X -Y/L M[1,j-1] goto D1,M[2,j goto M1, .-
goto D2"-

D2. L I., LX -Y/L
M (M[ijtl i> I) MI: L -LX- X, Y.- Y-LX Mi+lj] goto M1,

goto M2
M2- L -LX X. Y -Y -LX 

Figure 23. Module descriptions for the triangular system solver

To derive the canonical network, we observe that, for this computation, the operation is again

matrix multiplication, the operands are the L and X matrices, and the result is the matrix Y. Therefore,

we add -v, = (1 OF to all data flow velocities and then multiply all data flow velocities and distor-

tion matrices by L-'. This implies that the original network is a representative of the

IVy = [-1/2 OF linear equivalence class. The parameters that we obtain for the canonical network

are

-.- ai. IT1- [O 1Fr, (I OF[0 , V' Y 100F ,

Ll _ 1 LX= 0 L 0 01 .

r. Once again, the canonical network has an 'orthogonally-connected" architecture (Figure 24).

Figure 24. The canonical network for triangular system solution

IW

. . . . . . .--
. . . . . . . . a a - * .ba* a~a .~

. . . . . . . . . .. . . . . . . . . . . . . . . . a a. . . . . . . . ,"
a a". . ° a

- a . a
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Here too, we must employ the state flow technique to obtain the module descriptions for the

canonical network. The first step is to obtain a state flow for the original [-1/2 OF network. Observ-

ing that state D1 is first excited in M[1,p] and then propagates to M[1,p-l] and then to M[1,p-2] and so

- forth, suggests a state flow headed by DI with velocity [0 -IJ r . In fact, since DI = D2 and Ml = M2,

the state flow is essentially the same as the L data flow, with state D1 occupying the positions of the

diagonal elements and state Ml occupying the other positions (Figure 25). If we choose G, as shown

below (Figure 26), then we have these state flow parameters:

Performing the transformation on these parameters:

/L,= - = 1-/21 x  =- 1 0 .

We will derive the module descriptions for the canonical network from this transformed state flow

(Figure 27).

.. , o.'

o.
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/DI \ -

I \

DI Ml "

I. I /

D1 M

% _

Figure 25. The state low of the [-1/2 O r triangular system solver

(at forth clock cycle)

ID

D1 l

Figure 26. The convex grid set underlying the state flow

ii...
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1D1

I DI M1I "l

D\ Nil

MI

\DI/

Figure 27. The state flow of the canonical triangular system solver
(at fourth clock cycle)

l
We now note that the PEs on the left margin of the network (those of the form M[I,jD) only enter

state Dl. All other PEs (those of the form M[4j], i> I) can enter state D1 or MI. This suggests two new

module types: A-modules (M[I,j) with a single state Al = Dl and B-modules (Miji. i>l) with states

B= M1 and B2 =D1.

As before, we must determine a hard-wired state transition scheme that realizes this state flow.

We assume that all PEs are initially in the quiescent state, state 0. The first PE to be excited from this

state (via external signal) is .M[l,l1 which enters state Al. State Al then propagates northward, so we

" include 3M[1,j+I] goto Al in the control statements of state Al. One cycle after each A-module enters

state Al, the B-module immediately to its right enters state Bi; two cycles after, the B-module enters

state B2. Therefore, we also include M[2,j] goto B1" and *,M[2,j] goto B2 in 2" in the control statements

of state Al. State Bi then propagates eastward, so we include ,MLi+l,j] goto B" in the control state-t
ments of state BI. State B2 also propagates eastward, however at a rate of 1/2 processor per cycle.

Therefore, we also include M\i+l,j] goto B2 in 2" in the control statements of state B2. All PEs are

[ ,A

. . . . . . .. . . . . . . . . . . .. . . . . . . .. . .. . . .
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appropriately returned to the quiescent state by including "goto 0 in the control statements of states

i Al and B2. Thus, we derive the module descriptions below (Figure 28).
S

module state assignment statements control statements
type label

A (M[IjD Al: L - L, X - Y/L M[ij+l goto Al,
M[2j] goto B,

M[2,A goto 2 in 2,
goto 0

B (M[i,j, i> 1) BI: L .- L, X - X, Y - Y - LX M[i+lj] goto B1
B2, L - L X - Y/L M[i+,j] goto B2 in 2,

goto 0

Figure 28. Module descriptions for the canonical triangular system solver

An interesting transformation of the canonical triangular system solver is one from which the

resulting state flow has zero velocity. The networks with zero state flow velocity are those of the

-v, = [0 -11 linear equivalence class and have the property that no PE changes state. These networks

S therefore have two module types, one corresponding to state Al - B2 and one corresponding to state B1.

- Since no state transitions occur, the state descriptions of these modules do not contain any control state-

ments, Le. no control signals are transmitted through the network.

To exemplify such a network, we will add -v, to all velocities and then multiply all velocities

. and distortion matrices by M = L4- 1. The resulting parameters are

v, [0 OF, v 1  OF, vy-[0 11, , 0-[00 r,

' L'-[ 0-1 1 L'- [0 4
The resulting network is shown (Figure 29), and the module descriptions are given (Figure 30). Again,

we note that the choice of M does not alter the topology of the network; it is simply chosen so that the

network can be drawn in a more convenient manner (in this case, with the same layout as the underly-

ing convex grid set, G,).

.........................................

.. . . . . . . . . . .

.
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4,4

3,3 4,

T T

Figure 29. A [0 -I r network for triangular system solution

, module state amgnment statements control statements
type .label

E (4ijiD El: L - L.X - Y/L
F (M[i.j i> ) Fl: L -L.X - X.Y- Y -.LX

* Figure 30. Module dewriptions for the [0 IF triangular system solver

The previous disussion of systolic triangular system solvers was pertinent to the lower-triangular

*variant of the problem. The following trivial observation. however, allows us to apply thes results to

the solution of upper-triangular rystems If U is a nonsingular. upper-triangular matrix, then solving

the linear system W = UV can be reduced to solving the lower-triangular system Y = LX. where

L = RUR -1, Y = RW. X RV. and R is a rever= permutation matrix, ie..

0 •..,,0i,.
0... 0

' R-

10 0""

Another modifcation of this problem is to set Y = I (by hardwiring. perhaps) in order to handle an

important special case. triangular matrix inversion. One such systolic network (for upper-triangular

matrices) has been pr by Prepnrata and Vuillemin [101

I
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3.5. CROSSINGS IN TRANSFORMED NETWORKS

3.5.1. NECESSARY AND SUFFICIENT CONDITIONS FOR CROSSING

As one experiments with these transformations on two-dimensional systolic networks, one may

observe that many of them result in networks with communication edges that cros. Formally, a cross-

ing is the intersection of two nonparallel communication edges that have distinct endpoints. For

instance, if we transform the canonical matrix multiplier by adding the vector [-1/4 -1/41T to all

data flow velocities, we obtain a systolic network with crossings (Figure 31). Networks with such

crossings are somewhat undesirable since they are no longer planarly embeddable in the grid. This pro-

vides the motivation to characterize the conditions that cause crossing.

L

V.-

Figure 31. A [-1/4 -I/4F matrix multiplier

r We now establish a necessary condition for crossings in a systolic network.

Lemma 1:

In a connected systolic network (one in which the underlying undirected graph is con-

nected) with m data flows having velocities vj, v 2. -- ,y, a crossing exists only if there

exists an m-component vector, x, in the null space of V - [v, ... vj] with exactly one or

two noninteger components corresponding to nonzero, linearly independent columns of V.

Proof: Consider two edges e, (pp, + vi), and f. (pf,pf + vj), that cross at a point p. We

. . .. . .. . . .. . . .
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then have the following.-

Pe + , = pf + =fvj p, where , E [0,1.

P, - Pf + fevi - =fv- 0

Because p, and p, are both vertices of the systolic network, and because the systolic network

is connected, some sequence of edges (some possibly traversed in the reverse direction) will

form a path from p, to pf. Therefore, p, - pf = Vx', where x' is a vector of integers and

Vx' + ,V - =fvj 0.

If we let x = x' + ,e, - Jfej, where el is the unit vector with the kth coordinate equal to 1,

then Vx 0, Le., x is in the null space of V. Since e and f have distinct endpoints,

e E (0.1) or e (0,1), so x has one or two noninteger components. If x has one noninteger

component, that component must not correspond to a zero column of V. otherwise, the dis-

tinct endpoint condition is violated. If x has two noninteger components, then they must

not correspond to linearly dependent columns of V since, by definition, a crossing cannot

occur between two parallel edges. .

We can also establish a sufficient condition for crossings in a systolic network.

Lemma 2:

In a systolic network in which each nonboundary PE has communication edges correspond-

ing to every data flow, a crossing exists if there exists an m-component vector, x. in the null

space of V with exactly one or two noninteger components corresponding to nonzero,

linearly independent columns of V.

Proof: Suppose that x is a vector with two noninteger components, xi and x, satisfying the

above criteria. Let x, = x 1xil, = Ixj - x., and x' = x - fe, + efei x' is therefore a vec-

tor of integers. Let p, be the position of an arbitrary nonboundary PE such that

p• = P, - Vx' lies within the boundaries of the systolic network. Since each nonboundary

PE has communication edges corresponding to every data flow, a simple inductive argument

i...........................................
............................................... %'4,-,
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shows that any integer linear combination of the data flow velocities, when added to Pc,

yields the position of another PE (as long as this combination lies within the boundaries of

the network). In particular, then, pf is also the position of a nonboundary PE. The follow-

ing argument shows that edge e, (pc,p, + v1), must cross edge f, (pf,pf + vj.

Pt = PC - Vx'

p. = PC - V(x - ,,e, + ef,)"

Pt= Pe - Vx + &VeVC -
+

f= PC + evi -, v.

Pf + = pC + fev"

A similar argument can be applied when x has only one noninteger component. 0

Combining these two results in a trivial manner yields the following theorem.

Theorem 3:

In a connected systolic network in which each nonboundary PE has communication edges

corresponding to every data flow, a crossing exists if and only if there exists an m com-

ponent vector, x, in the null space of V with exactly one or two noninteger components

corresponding to nonzero, linearly independent columns of V.

Now, we will utilize this result to study the affine transformations described earlier and their effect on

crossing in systolic networks.

3.5.2. THE EFFECT OF AFFINE TRANSFORMATIONS ON CROSSING

-" First, let us examine the effect of Theorem 1 transformations on crossing. Suppose we are given a

crossing-free systolic network with V as its matrix of data flow velocities. Let x be a vector with

S, A T.Xk d 0 and two noninteger components, x, and x,. We can select a u that induces crossings

* when added to all data flow velocities in the following manner. Since the original network is

crossing-free, Vx 0 0. If V' represents the transformed matrix of data flow velocities, then

V"= V + U, where U =[u u -... "



V'x = (V + U)x

XV' = Vx + Ux

' V'Xfi VX + S"u :

Therefore, if we choose u = -Vx/S , then V'x = 0. This implies that a crossing exists unless v1 is

parallel to v, which, in general, is not the case. This demonstrates the fact that a crossing-free systolic

network may be transformed to one with crossings according to the rules of Theorem I. Since this

transformation is invertible, it also follows that a systolic network with crossings may be transformed

to a crossing-free one. Thus, crossing-freedom is variant with respect to Theorem 1 transformations

(which was expected since our example of a systolic network with crossings was derived by this type

of transformation on a crossing-free systolic network).

Now, we will examine the effect of Theorem 2 transformations on crossing. Let V be the matrix

of data flow velocities of the original network, and V' = MV be the matrix of data flow velocities of

the resulting network. If Vx=0, then V'x=MVx=MO=0. If Vx=w;e0, then

V'x = MVx = Mw * 0 since M is nonsingular (according to Theorem 2). Thus, crossing-freedom is

invariant with respect to Theorem 2 transformations.

* As an example, suppose we apply Theorem 3 to a suitably restricted systolic network with the

following matrix of data flow velocities:

V = 0 f (for instance, the canonical matrix multiplier).

If Vx = 0, then x, i 0, x2 =0, and X3 is unconstrained, so we may choose X3 to be noninteger. This

* component, however, corresponds to v3, which is a zero column of V. Thus, no x can be chosen to

satisfy the criteria of Theorem 3, and the network is crossing-free, as is evident (Figure 7). Now, let us

transform this network by adding u =[-3/2 -1/21r to all data flow velocities:

, [-3/2 -1/2 -3/2
IfV' =,thn 1/)1/2 -1/2 -1/2 1af h e

-" If V'x =0. then x, =(1/3)X =(-1/2)x. Therefore, x =[1/3 1 -2/31r satisfies the criteria of""
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Theorem 3, and the transformation results in crosings (Figure 32).

Figure 32. A [-3/2 -1/2Fr matrix multiplier (showing crossings)

3.5.3. ENUMERATION OF CROSSING-FREE CANONICAL CLASSES

The previous discussion leads us naturally to ask which of the linear equivalence classes of matrix

multipliers is crossing-free. When we perform a Theorem I transformation on the canonical design. we

obtain a new matrix of data flow velocities, V = V + U, ie.,

11+U12 U2~ U12

From Theorem 3, we know that crossings will exist if and only if there exists a vector in the null space

of V'with one or two noninteger components. The null space of V is a one-dimensional subspace of

R 3 as long asV'has full rank.whch must ethe casL Therefore, the null space ofN' can be

represented as the range space of a 3x1 matrix. W, where V~W =0. If we partition V' into 1V'1 V'21

where V I v ' and V 2 = V2' V3'1 we can rewrite this equation in the following way:

V'W [V ( 1V 2 7 I 'WI + V'2W2  0-o

",V'

I Io

If V2 ' and V3 ' are linearly independent, then we can choose a form for W with W, 1. Then we

must have W 2  v dis 2 )-' If W2 contains a noninteger, then x W clearly satisfes the criteria of

Theorem 3, and a crowing fust exist. Otherwise, let r max1* 1w.11, ie, r is the maximum



- .. .-. .

39

* magnitude of the elements of W2. If r > 1, then x W satisfies the criteria of Theorem 3 and a cross- ,.

ing must exist. The only remaining choices for W 2 are the 2X1 matrices over 1-1, 0, +11; these are

[0 OF, ±[O 1r. t[I Olt , t[l 11r and ±[1 -- r.

" We will now examine each of these possibilities on a case-by-case basis.

= -(V'2)-IV' + U J +U 2 1

ul -(1 +u+u)
W 2 = W, w3 = ,-."

U2  U2

Solving for u.

u1 T- (1+w 2+w 3)' u2 = (1+w 2+w 3)

W2 = [o OF:U = [o -1F.

W2 = [o IF: u = [0 -1/2 "

W'2 = 10 -IF: u is undefined for this choice

.W2 = O1 oF: u = [-1/2 -1/2F"

W2 = [-1 Ojr: u is undefined for this choice

=W2 = [1 1F: u = [-1/3 -1/3F
'w = [-I -i:. u= [- iF :-
w2 = - -iF: [- -IF

w 2 = - F: U = -1 -Jr

Thus, there are seven linear equivalence classes of crossing-free matrix multipliers with v 2' and v3 '

linearly independent.

We can apply the same argument as above when v1 and v3 are linearly independent simpiy by

"* permuting the columns of V (fit and second are interchanged). Proceeding in this manner, we obtain

L for the same possible choices of 'W2

• 
°?

• ~ ~~~~~~~.. .. . ... .. . . .. .°-
, 

- .°-°."." . . . ' . '. ' °°".". % '. . .'o .. .. 'o . '. o ' . '. '.. " . ' • '.

". ,,". .*. r .- .. - . - . , - ; Z €,.. . . : : .., .f . . .. / ., '. , _.. - ..
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--1 __-W2
u- (l+w 2+wQ ' - (1+w 2+w3)".

Therefore, the set of vectors we obtain is the same as the set above except that the first and second corn-

ponents are interchanged. This actually yields only two new vectors, [-I OJ' and [-1/2 OJr.

We have considered all possible cases except that in which v 2 and v 3 are linearly dependent and

v1 and v3 are linearly dependent. Since V must have full rank, this can be true only if v3' = 0 V,"

Indeed, this corresponds to the canonical network. Therefore, all together, there are ten linear

* equivalence classs of systolic matrix multipliers.

3.54. TWO DIMENSIONAL NETWORKS WITH FOUR OR MORE DATA FLOWS

Theorem 3 can also be used to show that certain broad classes of two-dimensional systolic net-

works must have crossings The following theorem summarizes this interesting result.

*' Theorem 4:

A two-dimensional systolic network (restricted as per Theorem 3) with four or more pair-

wise linearly independent data flow velocities must exhibit crossings.

Proof: Let us assume that vj, v2, v3.* and v4 are pairwise linearly independent. Since the

crossings found by considering these four data flows alone are a subset of all the crossings in

the network, we can, without loss of generality, consider the case of exactly four data flows:

VII V1 2 V 13 V 14V = (V, -, vvJ = Lv-
V21 V2 VM VU

We know from Theorem 3 that if a four-component vector, x. in the null space of V with

exactly one or two noninteger components can be found, then crossings must exist in the net-

work (since we already know that the columns of V are nonzero and nonparallel). 4,

The null space of V is a two-dimensional subspace ofl 4 and, as such. can be characterized as

the range space of a 4x2 matrix, W, where VW =0. We will rewrite this equation in the

following way:

S* 4,4.|
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VW =[VI V2) W, V1 W1 + V2 W-. 0. where V, =I v2j and V2 =v 3 vJ-

As before, we can let W1 = I and W, = -V'V. Since the columns of V are pairwise

linearly independent, V, and V, have full rank. Therefore, W, exists and has full rank.
Thus, all vectors in the null space of V have the form x - Wy, where y E R2..

Arguing as we did in enumerating crosing-free matrix multipliers. we restrict the choices

for W2 to those 2x2 matrices over 1-1, 0, +1). We can eliminate those containing 0 since the

corresponding column of W would contradict the pairwise linear independence hypothesis.

The only 2x2 matrices over 1-1, +11 not eliminated by the fact that W 2 has full rank are

± --~1 +1" " +1-1' " -1 -1 ad: +1 +1 .

In each of these cases, x = W1/2 1/21T satisfies the conditions of Theorem 3. Thus, in all

possible cases, some x in the null space of V can be found with exactly one or two nonin-

teger components, and a crossing must exist. 0

It is important to note, however, that if we remove the restriction that all nonboundary PEs must have

communication edges corresponding to every data flow, we can construct crossing-free systolic networks

with four pairwise linearly independent data flow velocities (Figure 33).

.i

.

. -. . . . . . . . . k ' .
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Figure 33. A crong-free sysolic network with four
pairwi2 linearly indepedent data flow velocities
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4. CONCLUSION

In this thesis, we have abstracted the parameters that we feel are important in specifying a sys-

tolic design. We have given a simple set of rules for transforming these parameters while preserving

the underlying computation. In addition, we have shown how to derive a description of the processors

in the resulting design through a state flow analysis. Finally, we have characterized those transforma-

tions that avoid the phenomenon of crossing.

We feel that these transformations may be useful to the designer implementing a systolic array as

a means of tailoring the array to a specific application, e.g, to avoid preloading data registers (make all

data flows have noxzero velocity), to ensure that processors need not change state (make the state flow

have zero velocity), to make the array more compatible with solving partitioned problems of larger size

(guarantee that no subset of the data flows forms a cycle), to make the array pipelinable (add an extra

component to all parameters and add a velocity which is nonzero in this component). Furthermore,

these transformations may prevent researchers from *reinventing" equivalent systolic arrays in an ad

hoc manner. Perhaps the most interesting topic for further research would be a characterization of

' those problems or algorithms which are amenable to systolic processing. This elusive goal would

i further unify the theory of systolic arrays.

,.
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